

Supply Chain (In-) Security

Graeme Neilson & Enno Rey

Contact us: graeme@aurasoftwaresecurity.co.nz, erey@ernw.de

Graeme & Enno

Graeme Neilson

- Security Consultant & Researcher
- Networking, Reverse engineering, appliances

11/07/10

Graeme & Enno

SPECIALISTS IN INTERNET SECURITY

Enno Rey

- Old-school network guy & founder of ERNW
- Blogs at www.insinuator.net
- Regularly rants at Day-Con
- Hosts TROOPERS

11/07/10

Why this talk

Most cons have "some specific characteristic"...

So does Day-Con

- Angus loves talks about "potential future attack paths"
- ... sometimes with a "spooky element" in them
- This talk is our contribution to this space ;-)
- What we love about Day-Con: Pretty much all talks make you <u>think</u>.
 - Not just sit around: "cool demo, next one"...

Agenda

- Supply Chain Overview
- Threats ... & Vulnerabilities
- Some common appliances' internal architecture
 - ... and how to attack those
- Mitigation & Conclusion

SPECIALISTS IN INTERNET SECURITY

SPECIALISTS IN INTERNET SECURITY

... and there's well known controls for this one

50						Ini	for	ma	ti	on	al												[]	aç	je	1]
3 4778					0	PSE	c	Pr	ac	ti	ce	8									Ja	inu	183	Υ	20	007
ole of C	ontents																									
1. Int	roductio	on .																								2
1.1.	Scope										-															2
1.2.	Threat	Mod	lel																							3
1.3.	Attack	Sou	irce	з.											-											4
1.4.	Operati	iona	1 5	ecu	ri	τy	In	ipa	ct	1	ro	20.	Th	ire	at											
1.5.	Documer	nt I	ayo	ut																						1
2. Pro	tected (Oper	ati	ona	1 1	Fur	let	io	ns																	8
2.1.	Device	Phy	sic	al	Ac	ces	88																			8
2.2.	Device	Man	age	men	t.	- 1	in-	Ba	nd	a	nd	1 0	Jut	-0	f-1	Ba	ind	(00	B)						10
2.3.	Data Pa	ath																								16
2.4.	Routing	g Co	ntr	01	P1	ane																				18
2.5.	Softwar	re U	pgr	ade	8	and	1 0	on	fi	gu	ira	123	or	1												_
	Integri	ity/	Val	ida	ti	on																				22
2.6.	Logging	g Co	nsi	der	at:	ior	15																			26
2.7.	Filteri	ing	Con	sid	er	ati	on	8																		29
2.8.	Denial-	-of-	Ser	vic	e :	Tra	ck	in	g/	Tr	ac	ir	1g													30
3. Sec	urity Co	onsi	der	ati	on	3																				32
4. Ack	nowledge	nent																								32
5. Ref	erences																									32
5.1.	Normati	ive	Ref	ere	nce	es																				33
5.2.	Informa	atic	nal	Re	fe	rer	ice																			33
Appendi	x A. Pr	roto	col	Sp	ec:	ifi	c	At	ta	ck	3															34
A.1.	Layer 2	2 At	tac	ks																						34
A.2.	IPv4 Pr	roto	col	-Ba	se	d J	tt	ac	ks																	34
the second se																										-

... and there's well known controls for this one

150_IIC_3	N4762.pdf (SECURED) - Adobe Reader EWEngth (United Status) in Comment 25, 11 (2)
and an	W Document Tools Window mep
0.4	
	26 / 78 💌 🔊 137% • 🔜 🔛 access control • 💽 🐑
	Thus service providers should ensure that physical access control facilities, policies and established, documented and implemented, commensurate with the assessed risks and the s to organizations, to control and monitor physical access into and out of, and within, service pro
	6.3.2 Personnel security categorization
	A formal system of security categorization for personnel should be established. The categories cater for the following personnel categories:
	a) service provider staff;
	b) organization employees;
	c) vendors and contractors;
	d) visitors.
	6.3.3 Security zones
	Separate physical security zones should be identified and established in service provider pren
	 a) restricted facilities – areas/rooms housing key equipment and facilities such as se computer equipment, communications switches and other related equipment and cable archives, air conditioning facilities, and main distribution frames for the power supply;

11/07/10

... at least for some attack vectors

Remote Compromise

 Physical access to device (on organization's premise)

... some thing may be overlooked here

SPECIALISTS IN INTERNET SECURITY

10

Who touches a device BEFORE it enters an organization's premises?

Do you *trust* the _____?

SPECIALISTS IN INTERNET SECURITY

Do you *trust* the _____?

SPECIALISTS IN INTERNET SECURITY

12

Manufacturer

Manufacturer

We won't discuss "the malicious manfacturer scenario" here

Home / News & Blogs / Zero Day

Scammers caught backdooring chip and PIN terminals

By Dancho Danchev | August 19, 2008, 1:51pm PDT

Summary

The U.K's Dedicated Cheque and Plastic Crime Unit (DCPU) have recently uncovered state of the art social engineering scheme, where once

The U.K's Dedicated Cheque and Plastic Crime Unit (DCPU) have recently uncovered state of the art social engineering scheme, where once backdoored, chip and PIN terminals upper installed at retailers backdoored, chip and PIN terminals were installed at retailers and petrol stations in an attempt to steal the credit card details passing through. Originally, before online banking took place proportionally with the developments on the banker malware front, scammers used to take advantage of old-fashioned ATM skimming and fake

11/07/10

So what does this mean?

Potentially every party in this chain might be able to touch "sensitive parts" of the device.

And maybe not only authorized parties

11/07/10

What do you mean by "sensitive parts"?

Contraction of the security.

Bootloader

Firmware / Image

Configuration Files

SPECIALISTS IN INTERNET SECURITY

17

"At a device's going-into-production,

Are you sure?

For the bootloader??

Would you notice (and delete) a user "sysupdate" in the administrators group of \$SOME_SECURITY_APPLIANCE?

11/07/10

"Isn't firmware protected against

- ... by cryptographic means (checksums, digital signatures etc.) ...
- Well, that's what you might expect.
- Reality proves otherwise...

So why would somebody want to do that?

- Blowing up something, some time
- Deployment of backdoors (to devices or your network)

Blowing up something, some time

Siberian pipeline sabotage

From Wikipedia, the free encyclopedia

The Siberian pipeline sabotage refers to the alleged 1982 sabotage of the Soviet Unengoy - Surgut - Chelyabinsk theft of American technology.

¢	ontents [hide]
1	Background
2	Hoax Theory
3	References
4	See also
5	External links

Background

The pipeline, as planned, would have a level of complexity that would require advanced automated control software, Supervisory Control And Data Acquisition (SCADA). The pipe utilized plans for a sophisticated control system and its software that had been stolen from a Canadian firm by the KGB. The CIA allegedly had the company insert a logic bomb program for sabotage purposes, eventually resulting in an explosion with the power of three kilotons of TNT ^[1].

The CIA was tipped off to the Soviet intentions to steal the control system plans in documents in the Farewell Dossier and, seeking to derail their efforts, CIA director William J. (followed the counsel of economist Gus Weiss and a disinformation strategy was initiated to sell the Soviets deliberately flawed designs for stealth technology and space defense operation proceeded to deny the Soviets the technology they desired to purchase to automate the pipeline management, then, a KGB operation to steal the software from a Can company was anticipated, and, in June 1982, flaws in the stolen software led to a massive explosion of part of the pipeline.

http://en.wikipedia.org/wiki/Siberian_pipeline_sabotage

SPECIALISTS IN INTERNET SECURITY

21

Blowing up something, some time

Backdoors

- [PAXSON00]:
- "A backdoor is a mechanism surreptitiously introduced into a computer system to facilitate unauthorized access to the system."

11/07/10

This brings up some interesting questions.

- Is enabled SNMP with public/private a backdoor?
 - Based on deliberate decision (= "surreptitiously"?).
 - Means to provide access.
 - Well, yes, maybe not intended for unauthorized access.
 - But used for such in many cases...

Types of backdoors

- Buffer Overflow vulnerabilities
- Hidden configuration options ("allowHiddenAccountLogin=YES")
- Unsecure cryptographic properties
 - Weak initialization vectors
 - Manipulated S-Boxes (e.g. in AES)
 - Deterministic PRNGs
- Master password ("Ikwpeter")
- Hidden credentials (user/pass)
- Port knocking
- Data leakage/logging second channel (external system, ...)
- Additional access mechanism (SSH, telnet, ...) ← most common rootkit behavior

11/07/10

Sunday, November 7, 2010

Typical vulnerabilities in supply

Lack of standards

- ISO 28001 much lesser known than ISO 27001
- Lack of visibility
- Lack of tools for verification

25

Architecture details of some popular security appliances

SPECIALISTS IN INTERNET SECURITY

26

Disclaimer

 All this stuff is not too well documented. We did our best when assembling the information displayed in the following slides. Still, it might be inaccurate here + there.

Cisco ASA

- Based on (mostly) standard PC hardware, x86 architecture
- Image is based on Linux kernel and can be extracted, see e.g.[1]
- Presumably the BIOS can be modified/replaced, although this voids the warranty ;-), see [2]
- "Verify" command for verifying the MD5 checksum present [3]
 - ... but does not inhibit firmware execution if checksum fails

with Intel CPU, harddrive, flashdrive etc. Parts can be exchanged easily

 JunOS based on FreeBSD kernel

Juniper routers

Usually new image released every 90 days

Routing engine is commodity hardware

- One can "predict new image" ;-)
- REs have CF card slot
 - Which, by default, is booted from first

SPECIALISTS IN INTERNET SECURITY

11/07/10

Juniper Netscreen devices

- ScreenOS proprietary RTOS on PowerPC
- Previous research "Netscreen of the Dead" Blackhat 2009 See http://www.troopers.de/content/e728/e897/e938/TROOPERS10 Netscreen of the Dead Graeme Neilson.pdf
- Weakness in the firmware protection & verification
- Developed fully trojaned ScreenOS firmware image with
 - backdoor
 - custom code execution
 - firmware update prevention

Nokia & Check Point

- Check Point supply Firewall-1/VPN-1 software which can run on top of other operating systems
- Appliances Linux/FreeBSD based
- Example Appliance (admittedly an old one, newer behave differently)
- Nokia IP71 series with SuperH RISC processor
- System is stored in on-board flash with no option to download flash :(
- Restricted shell with a custom menu console application running
- Attack vectors are:
 - break out of app and restricted shell
 - customise or overwrite BIOS to gain control of flash memory

10/22/10

SPECIALISTS IN INTERNET SECURITY

OFTWARE

33

Nokia (IP71) BIOS

- Removable BIOS chip running Nokia boot loader
- Remove chip, dump code, reverse engineer, modify, reflash chip
- BIOS rootkit or "BootKit"

BIOS level control

- Fortinet make Fortigate appliances (x86 platform).
- Runs FortiOS based on Linux.
- Supplied as standard gzip file with certificate and hash appended.
- Decompress gives an encrypted blob of data.
- The encryption used has weaknesses:
 - Watermarks (patterns in the data) looks like a disk image.
 - Location of MBR, kernel, root file system can be seen.
 - This allows known plain text attacks

Watermarks

00001f9c	03	2A	64	2B	48	7A	1A	56	11	77	46	25	18	54	33	52	39	.*d+Hz.V.wF%.T3R9
00001fad	73	35	52	12	4A	0B	52	2D	73	09	52	27	73	ЗD	77	04	2D	s5R.J.R-s.R's=w
00001fbe	63	2C	4F	7D	1D	51	16	70	41	22	1F	53	34	55	3E	74	32	c,0}.Q.pA".S4U>t2
00001fcf	55	15	4D	0C	55	2A	74	0E	55	20	74	ЗA	70	03	2A	64	2B	U.M.U*t.U t:p.*d+
00001fe0	48	7A	1A	56	11	77	46	25	18	54	33	52	39	73	35	52	12	Hz.V.wF%.T3R9s5R.
00001ff1	4A	0B	52	2D	73	09	52	27	73	3D	77	04	2D	63	2C	9C	AE	J.R-s.R's=wc,
00002002	CE	82	C5	A3	92	F1	CC	80	E7	86	ED	A7	E1	86	C6	9E	DF	
00002013	86	F9	A7	DD	86	F3	A7	E9	A3	DO	F9	В7	F8	9B	A9	C9	85	
00002024	C2	A4	95	F6	CB	87	EO	81	EA	AO	E6	81	C1	99	D8	81	FE	
00002035	AO	DA	81	F4	AO	ΕE	A4	D7	FE	вO	\mathbf{FF}	9C	AE	CE	82	C5	A3	
00002046	92	F1	CC	80	E7	86	ED	A7	E1	86	C6	9E	DF	86	F9	A7	DD	
00002057	86	F3	A7	E9	A3	DO	F9	В7	F8	9B	A9	C9	85	C2	A4	95	F6	
00002068	CB	87	EO	81	EA	A0	E6	81	C1	99	D8	81	FE	AO	DA	81	F4	
00002079	A0	EE	A4	D7	FE	в0	FF	9C	AE	CE	82	C5	A3	92	F1	CC	80	
0000208a	E7	86	ED	A7	E1	86	C6	9E	DF	86	F9	A7	DD	86	F3	A7	E9	
0000209b	A3	DO	F9	Β7	F8	9B	A9	C9	85	C2	A4	95	F6	СВ	87	ΕO	81	
000020ac	EA	A0	E6	81	C1	99	D8	81	FE	AO	DA	81	F4	A0	EE	A4	D7	

10/22/10

SPECIALISTS IN INTERNET SECURITY

38

- Fortigate will load firmware even if it has no certificate, no hash and is unencrypted.
- The verification is of filenames contained within the gzips
 - Start of MBR must contain a filename matching a device & version ID
 - Kernel must be called "fortikernel.out"

000000 1F8B 08 08 A1 7F90 4B 00 03 46 47 54 2D 36 30 2DK..FGT-60-3.0--build062-080 00000011 33 64 2D38 30 69 00000022 317....?1.e....-\$ 33 E78A 20 9 0 F1 24 6A * ... ? 9\$... 1h ... j 00000033 68 1A 2A 39 31 1C....&bL....z.E.. 00000044 94 9 85 45 E 08 BF 7 A D2 00000055A.....V...G..... C16 12 AA 00000066 28 90 D8 (...b.......... BB *.0....>..{...W 00000077 BC 57 2A 9R E6 J..z., .vm.....F}. 00000088 4A A5 7A 9C A7 76 4 6 6D FA 70 D3 'n .F.....ml~..x.. 00000099 86 46 BD A 9 B1 BD CE FB DE 6D 6C i.....e.UG.|e.q 000000aa 69 F3 C1 65 9E55 47 D2 65 BE 67 ..h..i4...O...U.g. 000000bb F9 D8 **B6** 67 C7 DR 000000cc B6 36 00 q..q...;6....

- Can modify existing system or replace kernel and file system.
- Automated firmware upgrade on reboot from USB stick is a feature.
- Boot into custom linux and dd memory
 - to Compact Flash data is encrypted
 - to serial console there is no encryption

Demo : ZombiOS

Operating system level control

As a point of comparison...

- Playstation 3 NOT a firewall, NOT protecting your data, designed to protect Sony's intellectual property and investment in game development.
- IBM Cell architecture chip designed with security at the hardware level
 - Secure processing vault
 - Runtime secure boot
 - Hardware root of secrecy
- Signed code necessary at multiple levels: boot time, hypervisor, gameOS, game.

As a point of comparison...

- Full hard disk encryption
- Recently a flaw in the USB stack allows running unsigned code BUT this is not persistent across reboots because of the signed boot code and signed hypervisor.
- → A gaming console is a more secure platform than most security appliances!

PlayStation 3 cluster

SPECIALISTS IN INTERNET SECURIT

43

Some (kind-of-checklist) questions

- What are the motivations/incentives of the involved parties?
- Do you think they're capable (of providing a secure supply chain)?
- What do you know about your organization's (security device) supply chain?

- (Most) security appliances are not designed to withstand "unauthorized physical access".
- The supply chain may not be as secure as you expect.
 - This might lead to "interesting scenarios" ;-)
- Think about it!

SPECIALISTS IN INTERNET SECURITY

45

There's never enough time...

11/07/10

SPECIALISTS IN INTERNET SECURITY

TROOPERS II, 03/28-04/01/2011 Heidelberg, Germany

Subscribe to the newsletter at <u>www.troopers.de</u>, follow us on Twitter <u>@WEareTROOPERS</u> and meet with experts from around the world at TROOPERS11 at Heidelberg, Germany.

References

Specific to Cisco ASA

- [1] "Simulation [of] Cisco ASA with QEMU and GNS3": http://kizwan.blogspot.com/2010/01/simulatio-cisco-asa-with-qemu-and-gns3.html
- [2] Cisco ASA 5580 Adaptive Security Appliance Hardware Installation Guide: http://www.cisco.com/en/US/docs/security/asa/hw/maintenance/5580guide/procedures.html
- [3] Cisco ASA "verify" command http://www.cisco.com/en/US/docs/security/asa/asa80/command/reference/uz.html#wp1569565

Specific to Cisco routers

http://www.cisco.com/web/about/security/intelligence/iosimage.html

11/07/10